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Abstract Recurring sequences of neuronal activation
in the hippocampus are a candidate for a neurophysio-
logical correlate of episodic memory. Here, we discuss
a mean-field theory for such spike sequences in phase
space and show how they become unstable when the
neuronal network operates at maximum memory ca-
pacity. We find that inhibitory feedback rescues replay
of the sequences, giving rise to oscillations and thereby
enhancing the network’s capacity. We further argue
that transient sequences in an overloaded network with
feedback inhibition may provide a mechanistic picture
of memory-related neuronal activity during hippocam-
pal sharp-wave ripple complexes.
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1 Introduction

The hippocampus is a brain structure crucially involved
in the formation of autobiographic, episodic memories.
Electrophysiological recordings of hippocampal neu-
rons in behaving rodents have revealed the existence
of place cells, which are active at only a few particular
locations in a known environment, and silent elsewhere
(O’Keefe and Dostrovsky 1971). The response of a
population of place cells hence encodes the position of
an animal in an environment and a spatial trajectory of
this animal is represented by a sequence of active place
cells (e.g. Dragoi and Buzsáki 2006; Davidson et al.
2009).

During sleep and resting states, spontaneous hip-
pocampal activity bursts have been observed in which
neurons were activated in an order similar to ex-
ploratory phases (Wilson and McNaughton 1994;
Nádasdy et al. 1999; Lee et al. 2002; Diba and Buzsáki
2007; Gupta et al. 2010; Dragoi and Tonegawa 2011).
The activity sequences observed in slow-wave sleep
mostly correspond to previously experienced trajecto-
ries, whereas under awake rest, they have been found
to even code for future trajectories. Therefore, these
network bursts have been hypothesized to reflect mem-
ories and imaginations of spatial episodes (for review,
see Buhry et al. 2011).

The activity sequences are correlated with the occur-
rence of sharp-wave ripple complexes (Lee and Wilson
2002; Diba and Buzsáki 2007), a brief (∼100 ms) field
potential deflection that is superimposed with a high-
frequency oscillation in the hippocampal CA1 pyrami-
dal cell layer (∼200 Hz; Buzsáki et al. 1992). Although
it is still debated how these spontaneous sequences
are related to memory in the psychological sense, they
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constitute a fascinating example of a biophysical mem-
ory phenomenon realized by local network mechanisms
(Csicsvari et al. 2000; Sullivan et al. 2011; Maier et al.
2011).

In this paper, we extend on a model of a sequence
memory network using a dynamical systems approach.
The model network is operated in a regime at which
it can robustly reproduce all stored sequences. The
summed length of all stored sequences is called the
capacity of the network. It is known that neuronal inhi-
bition can improve this capacity and the robustness of
sequence retrieval (e.g. Tsodyks and Feigel’man 1988;
Treves 1990; Hirase and Recce 1996). Here we show
that, as the network is operated close to its capacity
limit, inhibition gives rise to oscillations. Beyond maxi-
mum capacity, inhibition enables transient replay, i.e.
the partial reproduction of stored sequences—just as
observed during sharp-wave-ripple-associated replay in
the hippocampus.

2 Model

We model neuronal sequence generation in a network
of binary neurons with binary synapses (Willshaw et al.
1969; Golomb et al. 1990; Nadal 1991; Hirase and Recce
1996; Leibold and Kempter 2006). The network con-
sists of a randomly connected network of N excitatory
neurons i = 1, . . . , N. The neurons are simplified as
binary with state xi = 1 if neuron i fires and state xi =
0 if it is silent. In the hippocampus, neuronal firing
during the spontaneous sequences is phase-locked to
ripple oscillations (Maier et al. 2011) at a frequency
around 200 Hz. We therefore formulate the dynamics
in discrete time t indicative of the oscillation cycle.
A model neuron i receives an input from neuron j if
there is a connection by an active “synapse”. Following
Gibson and Robinson (1992), the synapses are de-
scribed by two independent binary stochastic processes.
One stochastic variable indicates the presence (wij = 1)
or absence (wij = 0) of a morphological connection,
with probability prob(wij = 1) = cm. The constant cm

thereby denotes morphological connectivity. The other
stochastic variable sij describes the synaptic state, which
will be used to store memories. In the potentiated state
(sij = 1) a synapse translates a presynaptic spike into a
postsynaptic potential whereas in the silent state (sij =
0) it does not influence the postsynaptic neuron. The
model neuron i fires a spike at cycle t + 1 if the sum of
its inputs hi(t) in the previous cycle t exceeds a thresh-
old θ . In summary, the network dynamics is described
by the equation xi(t + 1) = �

[ ∑N
j=1 wijsijx j(t) − θ

]
,

with � denoting the Heaviside step function.

The memories stored in the network are sequences
of activity patterns ξ described by binary vectors
of dimension N, ξ ∈ {0, 1}N . A memory sequence of
length Q is an ordered occurrence of activity patterns
ξ 1, ξ 2, . . . , ξ Q (Fig. 1). The number M of active neurons
in each pattern is called pattern size, and is the same
for all patterns. Memory sequences are stored in the
synapses using the learning rule by Willshaw et al.
(1969): A synapse is potentiated only if it connects two
neurons that are activated in sequence at least once.
Then the number P of stored associations between a
cue and a target pattern is related to the fraction c/cm

of activated synapses by

P = ln(1 − c/cm)

ln(1 − f 2)
. (1)

The coding ratio f = M/N is the fraction of active
neurons and fixes the firing rate. If all P stored as-
sociations can be replayed, the number α ≡ P/(N cm)

is called the capacity of the network, and counts the
stored associations per number of synapses at a neuron.
Note that the sequence length Q is generally much
smaller than the total number P of associations; the
number of retrievable sequences of length Q is given
by �P/(Q − 1)�. Whereas P reflects the combinatorics
of the synaptic matrix (determined by N, M, cm, c),
the requirement of a minimum Q implies a stability
constraint for the network as a dynamical system.

Fig. 1 Sequence of activity patterns. A network of N neurons
(boxes) is considered in discrete time t. At each time step M
neurons are active (filled boxes). A sequence that lasts for Q
time steps is described by the binary vectors ξ1, ξ2, . . . , ξ Q, where
(ξk)i = 1 if neuron i fires in pattern k and (ξk)i = 0 if not. If P
transitions between activity patterns are stored in the network,
the number of stored sequences of length Q is �P/(Q − 1)�
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In the biologically relevant scenario of low coding
ratio f , capacity grows like α ∝ M−2 for fixed c, cm.
Maximum capacity thus corresponds to the minimum
pattern size Mopt at which the last (Q-th) element of
the sequence can still be recalled. The minimum pattern
size has been shown to scale like ln N (Willshaw et al.
1969; Gardner 1987), and hence α ∝ N/(ln N)2.

Sequence retrieval is described by two macro-
scopic dynamical variables: the number mt ∈ [0, M]
of correctly activated neurons (hits) and the number
nt ∈ [0, N − M] of incorrectly activated neurons (false
alarms). For large network sizes N and large pattern
sizes M, we can assume Gaussian distributions for the
number of inputs h(t), and reinterpret the variables m
and n in a mean-field sense as their respective expecta-
tion values over realizations of the connectivity matrix.
The distributions of inputs are thus characterized by the
means μ ≡ 〈h(t)〉 and variances σ 2 ≡ 〈h(t)2〉 − 〈h(t)〉2;
for “hit” neurons

μOn = cm m + c n ,

σ 2
On(m, n) = cm (1 − cm) m

+ c
[
(1 − c) + c CV2

q(n − 1)
]

n, (2)

and for “false-alarm” neurons,

μOff = c (m + n) ,

σ 2
Off(m, n) = c

[
(1 − c) + c CV2

q (m + n − 1)
]

× (m + n) . (3)

The terms proportional to

CV2
q = (1 − f 2)P

(
1 − f 2

1+ f

)P − (1 − f 2)P

[1 − (1 − f 2)P]2
(4)

originate from correlations in the synaptic states that
are induced by Willshaw’s learning rule and are com-
puted in the Appendix following Gibson and Robinson
(1992).

The network dynamics is then implemented as an
iterated map:

(mt+1, nt+1) = [TOn(mt, nt), TOff(mt, nt)] . (5)

Since only those neurons fire whose input h(t) exceeds
the threshold θ , we estimate the expectation values of
hits mt+1 and false alarms nt+1 from the cumulative

distribution function (cdf) of the normal distribution,
�(z) ≡ [1 + erf (z/

√
2)]/2,

TOn(m, n) = M �[(μOn − θ)/σOn]
TOff(m, n) = (N − M)�[(μOff − θ)/σOff] . (6)

The nullclines (e.g. n − TOn(n, m) = 0) of this dynam-
ical system are shown in Fig. 2(A) for a case of stable
retrieval, i.e., there exists an asymptotically stable fixed
point (m∞, n∞) = [TOn(m∞, n∞), TOff(m∞, n∞)] with
many hits m∞ � M and few false alarms n∞ 
 N − M.

If the firing threshold is too low or the pattern size
is too large (Fig. 2(C)), the nullclines do not cross in a
retrieval regime: After initialization at the condition of
perfect retrieval (m0, n0) = (M, 0), all neurons immedi-
ately start to fire and the network falls into an all-active
state, (m, n) � (M, N − M). If the firing threshold is
too high or the pattern size is too low (Fig. 2(B)) only
an unstable fixed point exists in the retrieval region.
After initialization at perfect retrieval, the network
immediately falls into an all-silent state (m, n) � (0, 0).

The phase diagram reveals the three phases of our
model sequence memory network (Fig. 2(D)): all silent,
all active, and retrieval. The region in which retrieval
is possible is wedge-shaped with a thin tip at low pat-
tern sizes M. It turns out that the dynamics usually
converges to the fixed points in only a few iterations,
meaning that if sequence retrieval is stable for some
finite length Q � 10, it is likely to be stable for Q →
∞ (see thin grey area in Fig. 2(D) which indicates
transient replay between 4 and 99 iterations). Note that,
technically, Q ≤ P, and thus the limit Q → ∞ should
be interpreted as having stored a cyclic sequence with
ξ Q+1 = ξ 1.

The region of retrieval obtained from the mean-field
equations can be validated with computer simulations
of the corresponding networks of binary neurons. As
expected, owing to the finite size of the simulated
network, the region of retrieval is overestimated by
mean-field theory, yet the deviations are relatively
small (white discs in Fig. 2(D)). According to Eq. (1),
the number P of stored associations increases with
decreasing coding ratio f = M/N, and thus the net-
work obtains the highest memory capacity at the wedge
tip M = Mopt. There the stability of the fixed point is
particularly sensitive to noise and thus the high capacity
is not accessible unless the dynamics can be stabilized.
A natural way to stabilize replay is to include feedback
inhibition (see Section 3).

2.1 Optimal firing threshold

A different view on the task of the excitatory neurons
during sequence replay is that of an optimal detector:
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Fig. 2 Phase space and phase diagram. (A) Phase space is
spanned by the numbers m of hits and n of false alarms. The m
nullcline (solid line) intersects twice with the n nullcline (dashed),
producing stable (disc) and unstable (square) fixed points. Ar-
rows indicate attractive or repulsive character of the nullcline;
gray areas correspond to unphysical values n < 0 or m > M.
(B) Same as A for higher threshold θ . Only the unstable fixed
point remains. (C) Same as A for lower θ . Both fixed points
disappear. (D) Phase diagram. M-θ space consists of three areas:
All silent; the sequence dies out. All active; all neurons fire at

maximum rate. Sequence retrieval (black); the fraction of hits
is much larger than the fraction of false alarms for infinitely
many time steps (here tested as mt/M > 0.9, nt/(N − M) < 0.1
for t ≤ 100). The dashed line separates the all-silent and all-active
phases for M-values at which no retrieval phase exists. Areas in
light gray correspond to transient retrieval of at least 4 time steps.
White discs mark the boundary of the retrieval region as obtained
from simulations of N binary neurons for exemplary values of
M. Parameters here and elsewhere are N = 105, M = 1,600, cm =
0.1, and c = 0.05, unless specified otherwise

the detector neuron is supposed to fire if it belongs
to the hit population AOn of the current time step,
or not, in which case it belongs to the false-alarm-
population AOff. The prior probabilities for a neuron to
belong to either of these populations, Pr (AOn) = f and
Pr (AOff) = 1 − f , are given by the coding ratio f , which
stipulates how many active neurons code for a pattern
at any one time step. The basis for the decision whether
to fire or not is a one-shot sample from the distributions
of synaptic input levels. We again approximate these
distributions as Gaussians whose mean and variance
depend on whether the detector neuron is target in a
pattern or not.

A Bayesian strategy to solve this problem ideally
seeks to maximize the probability of success S, i.e. the
probability of taking the right decision:

S = Pr
(
spike|AOn

)
Pr (AOn)

+ Pr (silence|AOff) Pr (AOff) .

Given the spike generation model (spike ≡ h � θ), the
conditional probabilities of spike or silence correspond
to integrals of the respective probability densities over
regions of synaptic input separated by the threshold θ :

S (θ) = Pr (h � θ |AOn) Pr (AOn)

+ Pr (h < θ |AOff) Pr (AOff) .

The mean-field considerations leading to Eq. (6) allow
to rewrite the success probability in terms of Gaussian
cdfs:

S (θ) = �(zOn) f + (1 − �(zOff)) (1 − f ) ,

with

zOn/Off = μOn/Off − θ

σOn/Off
.

The threshold θopt that maximizes the success
probability can be readily obtained by demanding
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dS (θ) /dθ = 0. Since ∂� (z) /∂z = e−z2/2
/ (√

2πσ
)

we
have

dS
dθ

= 1√
2π

(

− f
e−z2

On/2

σOn
+ (1 − f )

e−z2
Off/2

σOff

)

,

i.e. the optimal threshold is at the crossing point
of the weighted Gaussians. The resulting equation is
quadratic in θ ,

z2
Off − z2

On = 2 log

(
1 − f

f
σOn

σOff

)
,

and has roots

θ± =
(
σ 2

On − σ 2
Off

)−1
[

c (m + n) σ 2
On − (cm m + cn) σ 2

Off

± σOnσOff

√√√√(c − cm)2 m2 +
(
σ 2

Off − σ 2
On

)
log

(
M2

F2

σ 2
Off

σ 2
On

) ⎤

⎦ .

(7)

Generally, one of the thresholds is positive and the
other negative when m � M, n 
 N − M, which en-
ables heuristic identification of the sign leading to max-
imization of S (θ).

2.2 Optimal threshold adaptation

Foreshadowing our interest in adaptive regulation of
the threshold, we ask how the threshold should change
with the excitatory activities m and n. Figure 3 displays
the optimal threshold θopt (m, n) from Eq. (7): In the
phase-space region of retrieval (large m, small n), the
level curves of θopt (m, n) can be very well approxi-
mated by a linear function, which, using Taylor expan-
sion, is

θopt (m, n) = θopt (M, 0) + ∂mθopt (M, 0) (m − M)

+ ∂nθopt (M, 0) n .

Figure 3(A) thus demonstrates that the optimal
threshold derived from analytic optimality considera-
tions linearly increases with activity levels m and n
as has been found numerically by Hirase and Recce
(1996).

The coupling coefficients ∂mθopt and ∂nθopt are plot-
ted in Figure 3(B). Both partial derivatives have
positive values, which, as intuitively expected, corre-
sponds to an increase in threshold for growing activity.
Two things should be noted further: First, the two
coefficients depend on M only little (at least for M >

880 at which replay is stable; see Figure 2). Second, they
are of similar value (between c and 2 c in our exam-
ple network). Together this indicates that the optimal
adapting threshold may be approximately realized by

A

B

Fig. 3 Optimal threshold is linear in activity. (A) Level curves
(grey) of the optimal threshold as a function of the numbers of
hits m and false-alarms n. In this exemplary network with c =
0.05, cm = 0.1, N = 105 and M = 1,600, the linear approxima-
tion (dashed; θ (m, n) � 1.118 + 0.079 m + 0.062 n) is very good
in the retrieval region (m ≈ M, n/N ≈ 0) of the phase plane.
(B) Coefficients ∂m/nθopt that couple the optimal detector thresh-
old θopt and excitatory population activity of On (grey) and Off
cells (black)

a single multiplicative coupling constant b ≈ ∂mθopt ≈
∂nθopt that is the same for both hits mt and false alarms
nt (see Section 3.1).

3 Role of inhibition

It has been shown previously that adaptive thresholds
can be interpreted as instantaneous global feedback
inhibition and can improve the capacity of associa-
tive memory networks (Golomb et al. 1990; Treves
1990; Hirase and Recce 1996). We therefore have in-
vestigated the effect of inhibition with respect to its
phase-space behavior in our model. First, we consider
inhibition to provide an instantaneous negative feed-
back. Second, and unlike previous approaches, we treat
global inhibition as an additional dynamical variable.
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3.1 Instantaneous global inhibition

Motivated by previous results on optimal thresholds
(Section 2.2 and Hirase and Recce 1996), we intro-
duce an instantaneous negative feedback proportional
to the total number m + n of active neurons. The
dynamics is derived from Eq. (6) by substituting θ →
θ + b (mt + nt), where the positive b acts as a feedback
gain.

The main effect of inhibition is as follows. When the
threshold θ is too low (as in Fig. 2(C)), inhibition moves
the n-nullcline rightward; when θ is too high (as in
Fig. 2(B)), inhibition moves the m-nullcline downward.
Finally, in cases for which M is below the optimal
pattern size Mopt of the purely excitatory model, and
no threshold exists for which replay is stable (as in
Fig. 4(A)), inhibition moves both nullclines at the same
time. Thus, inhibition restores the stable fixed point
and therefore effectively enlarges the retrieval phase
(Fig. 4(B)). In particular, inhibition lowers the optimal
pattern size Mopt, thereby enhancing memory capacity
α ∝ M−2

opt (by a factor of about 2 in the example of
Fig. 4(C)). Interestingly, the optimal range for the feed-
back gain (b � c) fits well to that for the Bayes-optimal
threshold in Fig. 3(B). For such optimal values of b the
lower border of the wedge becomes roughly horizontal
and the threshold θ is close to zero (not shown). Physio-
logically, the feedback gain b may be adjusted into this
range by plasticity of inhibitory synapses.

To investigate the scaling behavior of the memory
capacity, we determined the minimum pattern size Mopt

for different network sizes N and found the well-known
logarithmic dependence Mopt ∝ ln N regardless of the
inhibitory gain b (Fig. 4(D)). The capacity thus still
grows with network size as α ∝ N/(ln N)2.

An alternative view on instantaneous global feed-
back inhibition can be derived from the mean val-
ues in Eqs. (2) and (3), viz., the substitution θ → θ +
b (mt + nt) effectively reduces the connectivities cm,
and c to cm − b and c − b . The ratio r = (cm − c)/c
between non-activated and activated synapses can be
interpreted as the plasticity resources of the network
and was shown in Leibold and Kempter (2006) to
critically define the signal-to-noise ratio at the post-
synaptic neurons (with maximal capacity at r ≈ 10 for
fixed N, M, cm). By substituting cm → cm − b and c →
c − b , instantaneous global inhibition with b < c can
be formally interpreted to increase the signal-to-noise
ratio like r → r/(1 − b/c). Since, in the present paper,
we initially assume r = 1, a feedback gain of b > 0 thus
generally increases the signal-to-noise ratio for fixed c
and thereby enhances capacity (Fig. 4(C)).

3.2 Dynamic global inhibition

We next asked whether the effects observed with in-
stantaneous global inhibition can be reproduced in a
more physiological scenario in which inhibitory activity

Fig. 4 Retrieval with
instantaneous global
inhibition b = 0 (black),
b = 0.4 c (red), and b = 0.8 c
(blue). (A) Nullclines (red
omitted). Firing threshold θ

for the blue nullclines is offset
by −b M to account for lower
mean input h. (B) Phase
diagram. Grey vertical line
and white dashes indicates
M, θ values used in A. Light
colors show transient
retrieval of at least 4 time
steps. (C) Capacity (black)
and minimum pattern size
Mopt (gray) as a function of
b . (D) The minimum pattern
size grows sublinearly with N
so that the capacity shows an
overall increase. The dashed
grey line indicates a
logarithmic dependence
M ∝ ln N

A B

C D
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has its own dynamics, and what additional features
such inhibitory dynamics would give rise to. To this
end, we extended the model from Eqs. (5) and (6) by
including a third dynamical variable kt that accounts
for the number of spikes in an inhibitory pool of K
neurons. Each neuron in this pool is assumed to project
to and to receive input from excitatory neurons with
probabilities cIE and cEI , respectively. Analogous to
Eq. (5), the dynamics of kt is implemented as the map
kt+1 = TInh(mt, nt) with

TInh(m, n) = K �[(μInh − η)/σInh]. (8)

The mean synaptic input and its variance are

μInh(m, n) = cEI wEI (m + n) (9)

σ 2
Inh(m, n) = w2

EI cEI (1 − cEI) (m + n). (10)

The parameter wEI denotes the synaptic weight of
the connections from excitatory to inhibitory neurons.
The inhibitory action on the sequence-related variables
m and n is implemented by replacing the thresholds
in Eq. (6) by θ → θ + wIE cIE kt, and the variances
by σ 2

On/Off(m, n) → σ 2
On/Off(m, n) + k w2

IE cIE (1 − cIE).
Again, wIE is the corresponding synaptic weight.

To test for sequence retrieval, the map is initial-
ized with a perfect pattern and matching inhibition,
(m0, n0, k0) = [M, 0, TInh(M, 0)]. The resulting phase
diagram reveals again regions of stable and transient
retrieval (Fig. 5). In agreement with the linear instan-
taneous inhibition model, the retrieval region in the
phase diagram extends to lower pattern sizes M (higher
capacities). However, the non-linearity of the sigmoidal
Gaussian cdf in Eq. (8) introduces a shearing of this re-
gion that can be explained as follows: The Gaussian cdf
is roughly linear in the vicinity of the inhibitory thresh-
old η and virtually flat elsewhere. Hence, as an approx-
imation, inhibition has no effect at low total activities
m + n, it adds a constant wIE cIE K to the threshold
θ at high total activities and establishes a nearly lin-
ear coupling for intermediate regimes, similar to the
instantaneous-inhibition model from Figure 4. During
sequence retrieval, total activity is approximately con-
stant, m + n � M, and therefore the retrieval region
of the dynamic-inhibition model can be understood
as a combination of three retrieval regions of the
instantaneous-inhibition model for different feedback
gains b and thresholds θ .

The broadening in θ of the region of retrieval (for
constant M) with both instantaneous and dynamic in-
hibition suggests that sequence memory becomes more
robust. Mean field theories, however, generally overes-
timate the regions of stable sequence retrieval (Latham
and Nirenberg 2004). To assess the predictive power

Fig. 5 Comparison of the retrieval regions in M-θ space for
the 2-dimensional model without inhibition (black) vs. the 3-
dimensional model with increasing dynamical feedback inhibi-
tion (red, blue). Triangles on the red region mark the first values
of θ (in integer steps) for which sequence retrieval is unstable in
simulations. Light colors show transient retrieval of at least 4 time
steps. (a–f): Example trajectories from network simulations for
M-θ pairs as indicated by white markers a–f (mt: green; nt: orange,
kt: blue). The grey vertical lines indicate Hilbert phase zero for
the false-alarm neuron activity nt. Parameters are K = 5,000,
wIE = 0.012, cIE = 1, wEI = 1, cEI = 0.01, and η = 13 for the
red region; η = 8.8 for the blue region. Inset: Robustness of se-
quence retrieval against threshold jitter with (red, K = 5,000) and
without inhibition (black) at M = 1,500 for simulated networks
with threshold noise

of our mean field results, we ran further simulations
where neuronal thresholds θ were jittered according to
a Gaussian process. The results show that the increase
of the relative range of thresholds by inhibition indeed
withstands threshold noise (Fig. 5 Inset). At high capac-
ities, the demand of robustness against threshold noise
implies that the area of retrieval should be broadest at
minimum M = Mopt.

We suggest two heuristic criteria for the parame-
ters of dynamic inhibition. First, to achieve maximum
sensitivity of the inhibitory feedback, the linear region
of TInh(m, n) should be centered at the average total
input m + n � M during retrieval. This requirement
is granted by setting the inhibitory threshold to η =
μInh(M, 0). Second, the slope at this average total input
should yield maximum capacity according to the instan-
taneous inhibition model (Figs. 3(B) and 4(C)), i.e., it
should take a value of at least c. This requirement can
be met by appropriately choosing the coupling factor
wIE K. The blue region in Fig. 5 illustrates the outcome
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of such an optimization at M = 880 with an effective
slope of 1.6 c (the red region is obtained at M = 1,300
and slope 1.3 c). The region of stable retrieval is al-
most flat in M-θ space, suggesting that replay is robust
against variability in pattern size M. To the left of
the region of stable retrieval, we observe in lighter
color a substantial region of transient sequences. Such
large regions of transient retrieval only occur for slopes
larger than c (not shown), which corresponds to the
optimal gain factors for the threshold adaptation from
Fig. 3(B). The minimum pattern size Mopt of stable
retrieval, however, does not decrease further for slopes
above c (as in Fig. 4(C)).

Simulations confirm the shape of the fundamental
regimes all active, all silent, and retrieval predicted by
the three-dimensional mean-field model. Figure 5(a–f)
displays simulated trajectories (mt, nt, kt) for typical
situations. Interestingly, all-silent states can also some-
times be observed for low threshold values, where inhi-
bition overcompensates the false alarms and transiently
allows for sequence retrieval before the network falls
back into silence (Fig. 5(c)).

In the retrieval phase the network typically exhibits
oscillatory behavior (Fig. 5(b–d)) arising from the inter-
play between excitatory neurons mt, nt and inhibition
kt that manifests itself in oscillations of the two with
the phase of inhibition slightly delayed (by about one
timestep). The periods of these oscillations are about
5 to 10 time steps corresponding to gamma-range fre-
quencies of 20 to 40 Hz, under our initial assumption
that one time step corresponds to a ripple cycle of
5 ms. The oscillatory activity components are present
during both transient (Fig. 5(c), (d)) and ongoing replay
(Fig. 5(b)). We further analyzed the oscillations based
on the inhibitory activities kt during ongoing replay
from cellular simulations (Fig. 6). As a measure for
the oscillation amplitude we computed the standard
deviation over time std(k/K), and found that it in-
creases towards the edges of the region of replay. As a
consequence, the oscillations are particularly strong at
the low-M tip of the replay wedge, where the network
realizes its maximum capacity. From this, we conclude
that gamma oscillations herald the onset of dynamical
instability as it is the case at the capacity limit.

Fig. 6 Transition to instability is marked by increase in ampli-
tude of gamma oscillations. At lower left, colored discs mark
combinations of M and θ for which numerical simulations re-
vealed stable retrieval. The standard deviation over time of the
inhibitory activity kt (normalized to K) is represented by the
color code as indicated. At top left, oscillation amplitudes (mea-
sured as std(k/K) are shown for networks with M, θ along the
midline of the wedge. Examples of kt/K are given with std(k/K)

as orange bars. At right, oscillation amplitudes std(k/K) are
shown for networks of fixed M = 1,400 and different thresholds;
the corresponding kt/K are given with std(k/K) as grey bars.
The top right panel shows an exemplary power spectrum of the
inhibitory activation k − 〈k〉 for a simulation with M-θ values as
indicated. The peak of the spectrum at around 1/7 per time step
corresponds to 30 Hz for a time step of 5 ms
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4 Discussion

This paper presents a dynamical-systems extension of
time-discrete sequence memory models with inhibitory
feedback. The effect of instantaneous global feedback
inhibition in memory networks has been well studied
(e.g. Tsodyks and Feigel’man 1988; Golomb et al. 1990;
Treves 1990; Hirase and Recce 1996; Amit and Huang
2010). Our model shows that also dynamical feedback
inhibition can stabilize the retrieval of memory se-
quences and thereby increase both memory capacity
and robustness. The optimal instantaneous global in-
hibitory feedback is a roughly linear function of the
total network activity as numerically found by Hirase
and Recce (1996) and semi-analytically confirmed by a
probabilistic approach in the present paper. Extending
the model to dynamic global inhibition, we find that, at
the edges of stable replay, inhibition induces strong oscil-
lations, which can be interpreted as gamma oscillations.

Gamma oscillations are ubiquitous in the brain and
their origin is generally attributed to local inhibitory
networks (Wang 2010). Several cognitive functions
have been related to increased gamma power and co-
herence, such as sensory integration, attention, and
memory (Jutras and Buffalo 2010). Specifically, gamma
coherence between subregions in the hippocampal for-
mation and prefrontal cortex has been shown to cor-
relate with involvement in a short-term memory task
(Sigurdsson et al. 2010). This finding fits well into the
general view of gamma rhythms as a mechanism that
facilitates communication between brain areas (e.g.
Colgin 2011). In our model, gamma occurs as a side
effect of feedback stabilization during replay. In com-
bination with these findings, our model suggests that
memory networks may have to be critically loaded to
be able to transfer information to other brain areas.

Our model also reveals parameter regions in which
transient retrieval occurs that lasts for only a few time
steps. These regions of transient retrieval (light color
in Fig. 5) extend far into low pattern sizes M for strong
inhibitory feedback, and thus correspond to the regimes
of largest memory capacity. Neuronal networks ex-
hibiting activity sequences hence operate with optimal
memory performance if they are in a regime of hyper-
excitability that is stabilized by delayed inhibition. This
transient retrieval regime is consistent with the dynamic
features of sequence replay during sharp wave ripple
complexes in the hippocampus, which typically extends
over 5 to 10 cycles of an approximately 200 Hz oscil-
lation, and that are accompanied by delayed inhibitory
feedback (Maier et al. 2011).

In large environments, sequence replay in vivo
can span several ripple episodes (Davidson et al.

2009), showing that long sequences can be constructed
by concatenating multiple transient replay episodes.
Our model argues that such fragmentation solves the
dilemma between stability and capacity by not having
to trade capacity for stability. Instead it uses dynamic
feedback inhibition to break sequence replay into
short stable fragments of transient replay. It remains
open though, how information transfer between these
fragments is realized and whether it occurs intra- or
extrahippocampally.

Throughout the paper, we consider the connectivity
parameters c and cm as constants, based on the assump-
tion that the morphological connectivity cm is mainly
determined by geometrical constraints such as the size
of the cell surface, or the volume requirement of wiring.
The functional connectivity c is assumed to result from
the specific learning rules that ensure that the network
always remains plastic: In order to store new memories
a large fraction of synapses has to be able to change
its state. In the parameter regime used for our analy-
sis, this requirement is fulfilled by fixing c/cm = 0.5.
Moreover, the connectivities employed are small, since
experiments indicate that hippocampal networks are
sparsely connected (Miles and Wong 1986).

Limitations of our model arise from specific assump-
tions underlying our analysis. One of them is that of
a constant pattern size M. In reality pattern sizes may
be variable (as discussed for a different learning rule in
Amit and Huang 2010), leading to a decreased capacity.
Another significant simplification of our model is the
discreteness in time. Dynamical interactions of synaptic
currents and membrane processes during sharp-wave
ripples may also reduce capacities. In this sense the
capacity values derived in this paper can only be con-
sidered as upper bounds and for determining scaling
behavior.

Extending the model to more realistic dynamics is
necessary to investigate how close to the upper bound
of capacity a real spiking network can get. Such a trans-
lation to biophysically more realistic neuron models,
however, raises difficult problems. The massive bom-
bardment by synaptic inputs (specifically inhibition)
sets the cells into a high-conductance regime, in which
the effective time constants become short and spike
generation very sensitively depends on the timing of
inputs. Further, the interplay between excitation and
inhibition not only has to keep the cell in a balanced
state in which spiking is sparse, but also has to ensure
synchrony of spiking in the time slots of roughly 5 ms.

Other models of hippocampal sharp-wave ripples
focused on dynamic features of sharp-wave ripples
as a network phenomenon mostly disregarding func-
tional aspects of sequence replay. In the model of
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Memmesheimer (2010) sharp waves arise from spon-
taneous bursts of excitatory activity that are shaped
by non-linear dendritic integration. Such a scenario
requires a relatively high level of background activity
(high n) and it is not yet clear how well this can work
together with sequence replay at high memory capac-
ities, where false alarms n are not desired. In another
model by Vladimirov et al. (2012) synaptic integration
plays no role in evoking action potentials. Spiking is
propagated across axons by axo-axonal gap junctions
(Schmitz et al. 2001). Also in this model the rela-
tion of these axonal spike patterns to memory-related
processes has not been evaluated. Moreover, it’s un-
clear how inhibition could physiologically be realized
in such a scenario. We thus conclude that, despite these
considerable efforts, we still lack a model of sharp wave
ripples that combines realistic physiological phenom-
enology with functional hypotheses of the hippocampal
memory networks.
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Appendix: First and second moments

The dynamics underlying neuronal activity sequences
is formulated as a two-dimensional iterated map in
Eqs. (2)–(6). This time-discrete dynamics is simplified
using Gaussian approximations for the distributions of
the number h of synaptic inputs to a specified neu-
ron. The Gaussian approximation therefore requires
expressions for the means and variances of the input
sums h.

Inputs can be of two kinds, hits m and false alarms
n. The input sum h = ∑m+n

j=1 w j s j thus runs over all
m + n ≤ N active (firing) neurons in the network and
depends on two binary random variables for each po-
tential input: w ∈ {0, 1} indicating the presence of a
synaptic connection, and s ∈ {0, 1} indicating its state
(Gibson and Robinson 1992). The stochasticity of s is
inherited from the randomness of the activity patterns
underlying the memory sequences via Willshaw’s learn-
ing rule.

The distribution of w is given by the morphological
connectivity such that prob(w = 1) = cm. The probabil-
ity prob(s = 1) of a synapse having been potentiated
depends on whether it connects or not neurons that
should fire in sequence at the particular point in time.

The Willshaw rule ensures that synapses that connect
sequentially firing neurons are in the potentiated state,
i.e. prob(s = 1) = 1, and thus for this subset of synapses
the input sum depends on a binomial process with
probability prob(w = 1) = cm.

For the other synapses, the probability prob(s = 1) =
qx depends on the the number x ≤ P of associations the
specific postsynaptic neuron is involved in. Note that if
the postsynaptic neuron is never supposed to fire, the
Willshaw rule will activate none of its synapses and thus
q0 = 0. In general, the probability that a neuron is not a
target in one specific step of the sequence (association)
is 1 − f , and thus the probability that it is not a target
in any one of x associations is (1 − f )x. Conversely, the
probability of such a synapse being potentiated is qx =
1 − (1 − f )x. Hence, assuming independence of the two
binomial processes, the input sum h for this subset of
synapses is binomial with probability

prob(wi si = 1) = cm qx . (11)

The probability distribution of the input h can then be
determined as

p(h) =
P∑

x=0

p(h|x) p(x) , (12)

in which the conditional probability p(h|x) =(m+n
h

)
(cm qx)

h (1 − cm qx)
m+n−h is derived from

Eq. (11), and the probability p(x) that a neuron
is involved in x associations is also binomial, viz.
p(x) = (P

x

)
f x (1 − f )P−x.

To compute expected values of h, we have to discern
between neurons that should be active at time step
t + 1 (and are supposed to generate the hits) and those
that should be silent (and potentially give rise to false
alarms). For the potential false alarms, we obtain

〈h〉Off =
m+n∑

h=0

h
P∑

x=0

p(h|x) p(x) =
P∑

x=0

p(x)

m+n∑

h=0

h p(h|x)

=
P∑

x=0

p(x) (m + n) (cm qx)

= (m + n) cm

P∑

x=0

[1 − (1 − f )x]
(

P
x

)
f x(1 − f )P−x

= (m + n) cm

[

1 − (1 − f )P
P∑

x=0

(
P
x

)
f x

]

= (m + n) cm
[
1 − (1 − f )P (1 + f )P]

= (m + n) c .
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Note that the last step makes use of the capacity of the
Willshaw rule, Eq. (1). Similarly, for the potential hits,
we obtain

〈h〉On =
n∑

h′=0

h′
P∑

x=0

p(h′|x) p(x) +
m∑

h′′=0

h′′ p(h′′)

= n c + m cm .

Here the expected value sums over two independent
subsets of neurons, the first one (h′) representing the
false alarms, and the second (h′′) representing the hits
during the previous time step.

The corresponding variances can be obtained anal-
ogously employing the formula of the geometric series
several times, and introducing the abbreviation CV2

q =
varx q/〈q〉2

x with expected values according to the dis-
tribution p(x):

σ 2
On(m, n) = cm m (1 − cm)

+ n c
[
(1 − c) + c CV2

q (n − 1)
]

σ 2
Off(m, n) = (m + n) c

×[
(1 − c) + c CV2

q (m + n − 1)
]
.

Note that CVq → 0 for f → 0, and, in this limit, the
variance formulas σ 2

On → m cm (1 − cm) + n c (1 − c),
σ 2

Off → (m + n) c (1 − c) from the present theory ap-
proximate those in Leibold and Kempter (2006).
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